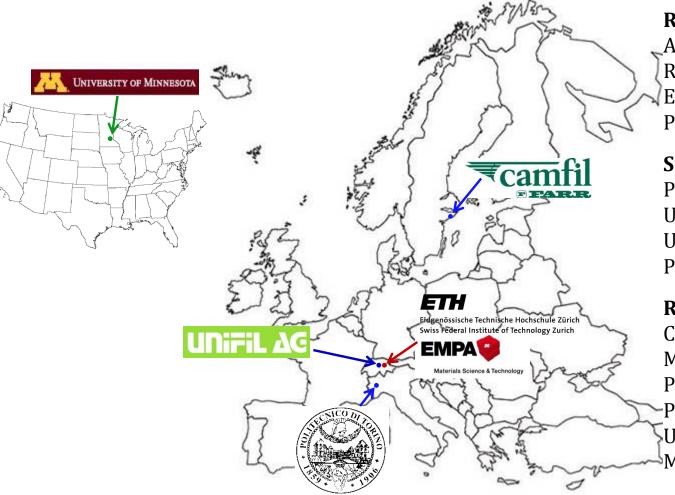
Inter-laboratory tests of the methodology for filtration efficiency tests in different filter media against nanoparticles

Panagiota Sachinidou, Shawn S.C. Chen, David Y.H. Pui, Paolo Tronville, Thomas Mosimann, Mikael Eriksson, Jing Wang


Outline

- Project background
- Pre-normative research
- Qualification of the setup
- Inter-laboratory tests
- Summary

Methodology to Determine Effectiveness of Filtration Media against Nanoparticles in the Size Range of 3 to 500 Nanometer

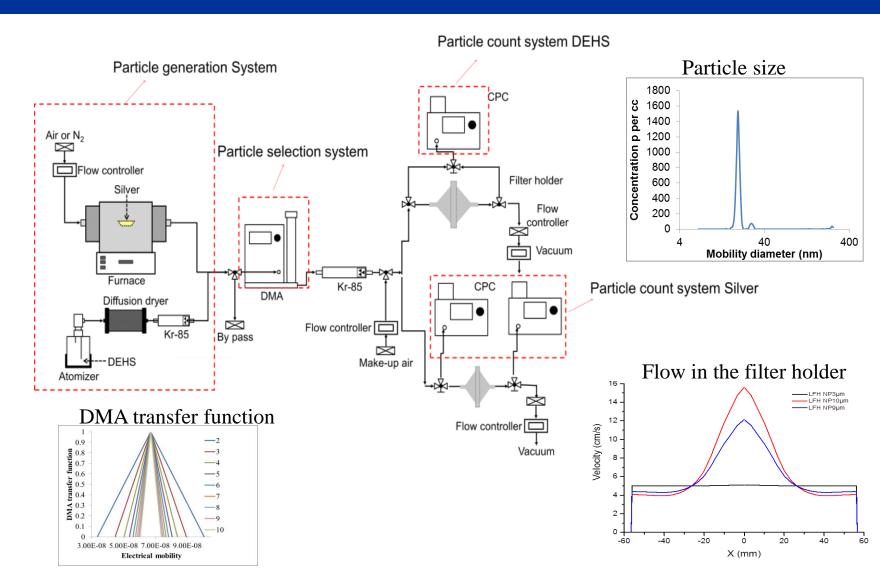
Reference lab

Air Quality & Particle Research ETHZ/EMPA, Switzerland Prof. Jing Wang

Supporting lab

Particle Technology Lab University of Minnesota, USA Prof. David Y.H. Pui

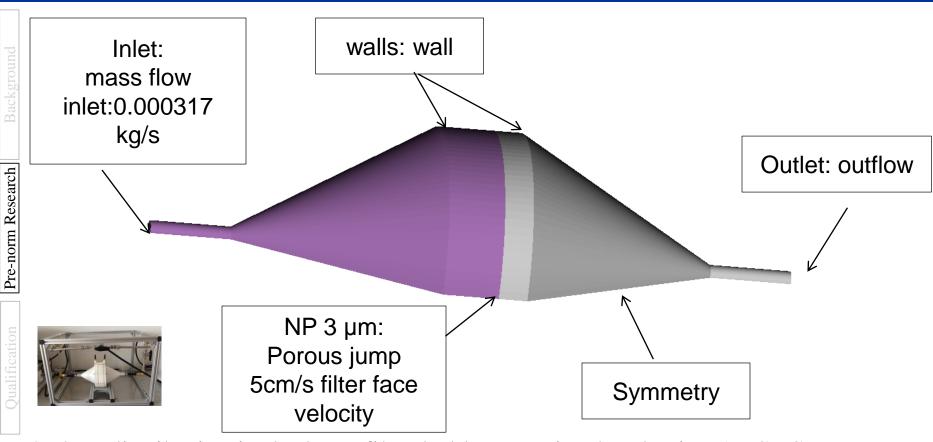
Round-robin test labs


Camfil, Sweden Mr. Mikael Eriksson Politecnico di Torino, Italy Prof. Paolo Tronville Unifil, Switzerland Mr. Nägeli Andreas

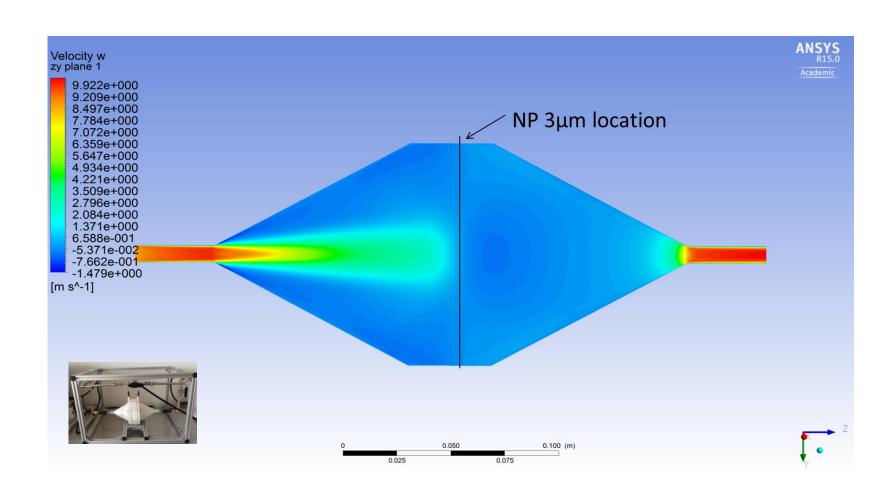
Summary of relevant air filtration standards

Designation	Title	Test particle	Remark
ANSI/ASHRAE Standard 52.2 (2012)	Method of testing general ventilation air- cleaning devices for removal efficiency by particle size	KCl particles in the range of 0.3–10 μm	Wind tunnel test using optical or aerodynamic particle sizers
EN 779 (2012)	Particulate air filters for general ventilation—determination of the filtration performance	DEHS particles in the range of 0.2–3.0 µm	Wind tunnel test using optical particle sizers
ISO 29463 series (2011a, b, c, d, e)	High-efficiency filter and filter media for removing particles in air	DEHS, PAO, and Paraffin Oil in the range 0.04 μm to 1.0 μm (0.1–2.0 μm with OPS)	Focus on the minimum efficiency at the MPPS and local efficiencies
NIOSH 42 CFR 84.181 (1995)	Non-powered air-purifying particulate filter efficiency level determination	A mass median aerodynamic diameter of $\sim 0.3 \mu m$, NaCl or DOP polydisperse particles	For respirator certification
EN 1822 series (2009a, b, c, d, e)	High-efficiency air filters (EPA, HEPA and ULPA)	DEHS, PAO, and Paraffin Oil in the range 0.05 μ m to 0.8 μ m (0.1–2.0 with OPS)	Focus on the minimum efficiency at the MPPS and local efficiencies
EN 143:2000	Respiratory protective devices—Particle filters—requirements, testing, marking	Various aerosol allowed including sodium chloride and paraffin oil	For respirator air filter certification
ISO 29461-1:2013	Air intake filter systems for rotary machinery—test methods—part 1: static filter elements	DEHS particles in the range of $0.3-3.0 \mu m$	Wind tunnel test using optical particle sizers

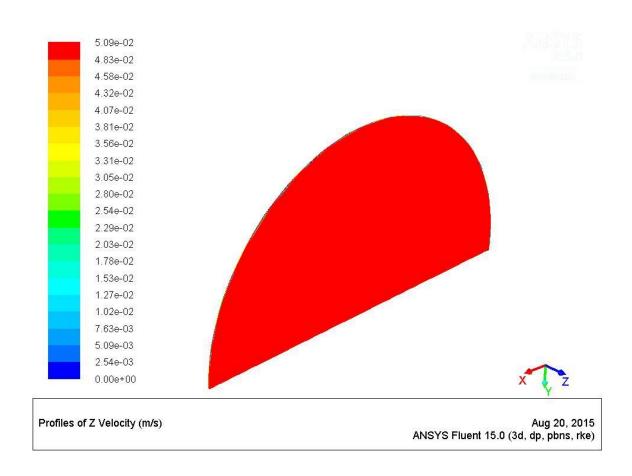
Jing Wang & Paolo Tronville (2014), Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles, J Nanopart Res 16:2417


Filtration tests

Sachinidou, P., Bank, Y.K., & Wang, J, Aerosol Sci & Tech, 2016


Pre-norm Research

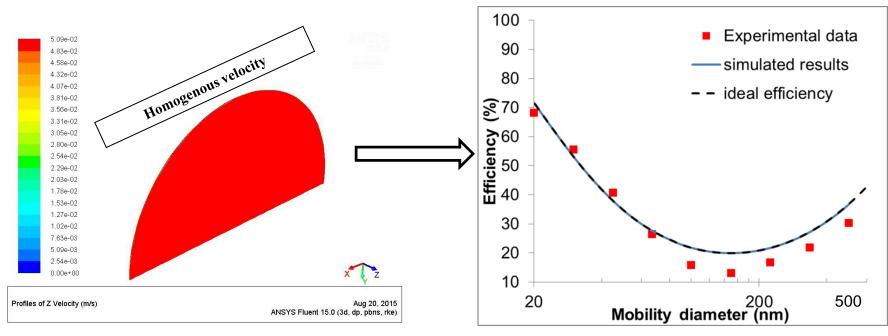
Flow distribution-CFD analysis



- Flow distribution in the large filter holder was simulated using ANSYS FLUENT.
- K-ε realizable model was applied and mesh independency study was performed.
- NP 3µm filter which is homogeneous was chosen for the investigation and simulated with porous jump boundary conditions.

Flow distribution- velocity distribution

Face velocity has a jet profile which is distributed homogeneously before the filter.



Face velocity is homogeneously distributed upstream the filter

Monodispersity investigation

• Flow distribution incorporated in the filtration model

• Flow distribution does not affect the calculated filtration efficiency.

Pre-norm Research

Qualification procedure

Zero count test

Counting accuracy calibration

DMA test

Neutralization efficiency test

Zero efficiency test

Preparatory checks

Qualification of the test rig -Neutralization efficiency

Neutralization Test

The neutralization effectiveness of the neutralizer was checked using two DMA connected in series. The first one was used to pre-select the desired particle diameter and the second one was used to select the particle diameter corresponding to singly, doubly and triply charged particles. This set up allows checking the efficiency of the neutralizer that is located inside the second DMA. The experimental particle charge ratio was compared with the theoretical one (Wiedensohler (1988) and Kim et al. (2005)) The same experiments were carried, using an additional neutralizer in between the two DMA in order to study if the residence time does not affect the neutralization efficiency.

Qualification of the test rig -Neutralization efficiency

\subseteq	2	
\subseteq	3	
F	4	
	d	
	3	
Y	١	
	٩	

Pre-norm Research

Qualification

	_,	
	9	
	D.	,
	늗	
		,
	Ч	

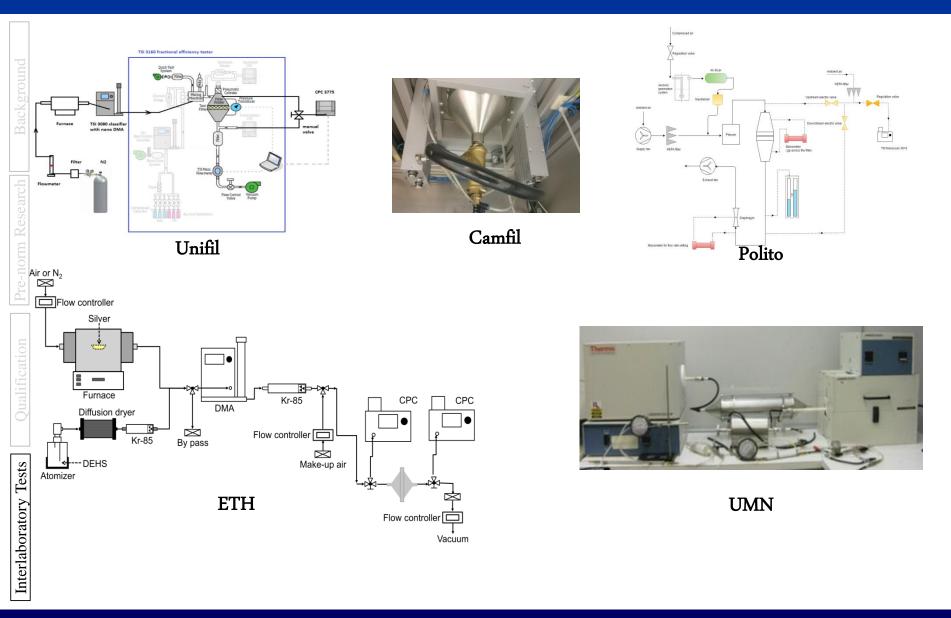
			1charges/icharge		
	Mobility diameter (nm)	Raw counts	Experimental Ratio	Theoretical Ratio	
1 charge	51.4	706.53			
2 charges	35.66	26.97	26.19	24.2	

			1charges/icharge	
	Mobility diameter (nm)	Raw counts	Experimental Ratio	Theoretical Ratio
1 charge	95.6	190.07		
2 charges	64.99	22.87	8.31	7.23

			1charge/icharge	
	Mobility diameter (nm)	Raw counts	Experimental Ratio	Theoretic al Ratio
1 charge	193.3	84.31	1	
2 charges	125.7	26.42	3.19	2.94
3 charges	99.22	4.855	17.36	14.49

			1charges/icharge	
	Mobility diameter (nm)	Raw counts	Experimental Ratio	Theoretical Ratio
1 charge	33.98	22389. 4		
2 charges	23.73	277.8	80.68	78.06

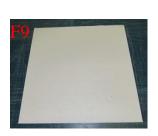
			1charges/icharge	
	Mobility diameter (nm)	Raw counts	Experimental Ratio	Theoretical Ratio
1 charge	80.58	7246		
2 charges	55.28	784	9.24	9.62


			1charge/icharge		
	Mobility diameter (nm)	Raw counts	Experimental Ratio	Theoretical Ratio	
1 charge	191.1	4690.8			
2 charges	124.9	1455	3.22	2.98	
3 charges	98.6	342.8	13.66	14.86	

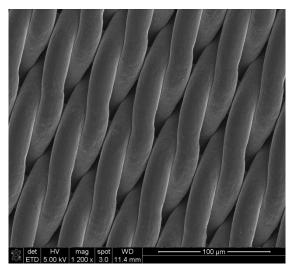
ETH (Kr-85)

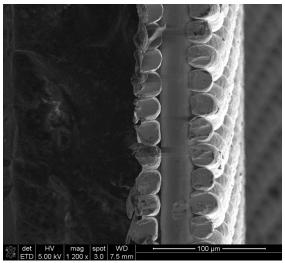
UMN (Po-210)

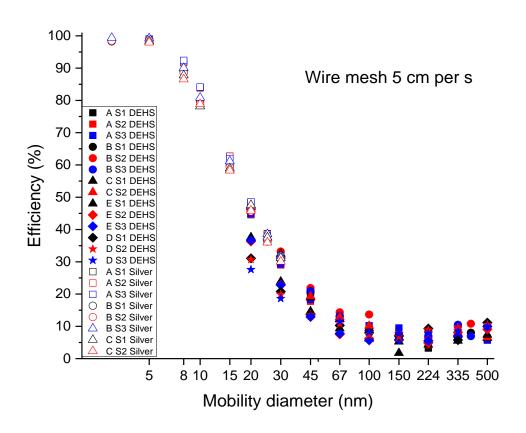
•Results show the experimental ratio is in good agreement with the theoretical one.


Test setup

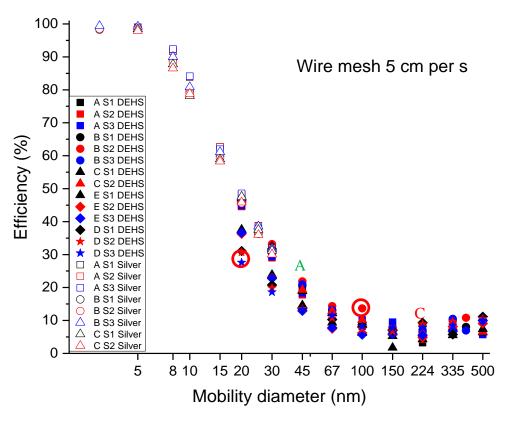
Filters tested


	filter type:	f ilter type:		media type:			
	bag filter	pleatable	synthetic			glass fiber	PTFE Synthetic
filter class:			non- charged	charged	discharged/ non charged		
Mesh			Х				
M5	Х			Х			
NP 3µm			Х				
F7	Х			Х	Х		Х
F7	Х		Х			Х	
F9		Х	Х			Х	
E11		Х	Х				Х
H13		Х	Х			Х	



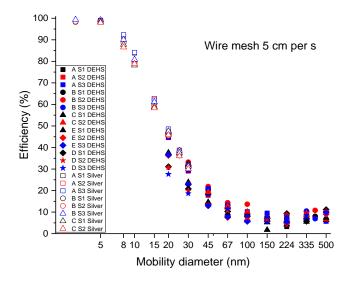


SEM image


Twilled Dutch weave 350x2600					
Solidity 0.62 -					
Fiber Size (wrap) 32 µm					
Fiber Size (weft) 22 µm					
Filter thickness	ess 0.08 mm				
Material	Stainless Steel				

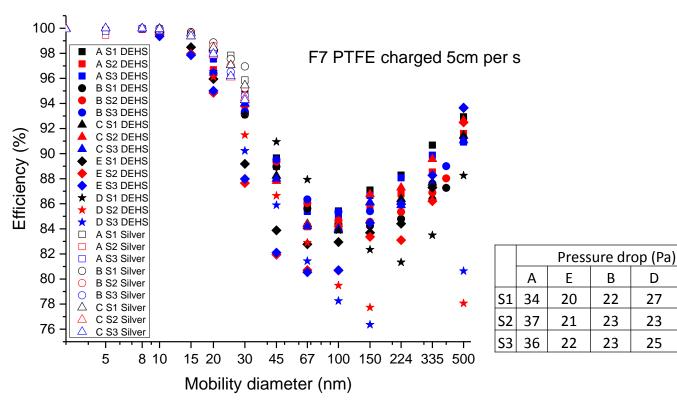
Wire mesh

Filtration efficiency results are in accordance with each other among the difference laboratories


Wire mesh

Green Color: stragglers Red Color: outliers

There are not many straggles or outliers in the whole particle size range.


Wire mesh

	m	S _r	S _I	S _R
20	43.2	0.5	4.6	4.6
30	27	0.79	5.59	5.64
45	17	0.81	3.48	3.57
67	11.653	0.685	2.252	2.354
100	8.087	0.625	1.618	1.735
150	7.18	0.86	0.77	1.15
224	6.26	0.82	1.78	1.96
335	7.55	1.55	0.55	1.64

- The results shows small variance; Thus, statistical analysis reveals a few stragglers or outliers.
- The variances calculated according to the statistical analysis are low for almost all the particle size range.

F7 charged

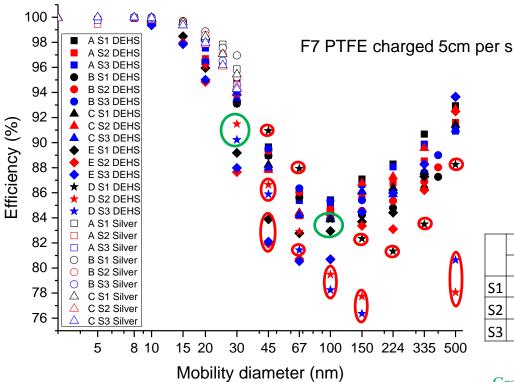
- D and E measures smaller efficiency compared to the ones measured by the other labs.
- Pressure drop is close among the different laboratories except from A. Possibly this could attributed to the measurement range of the instrument at laboratory A (minimum limit equals to 13Pa).

D

27

23

25

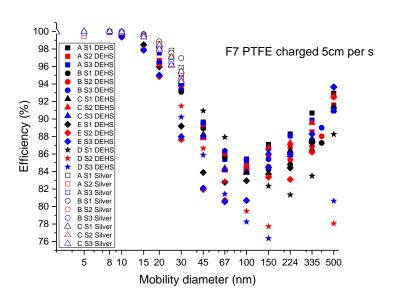

C

25

21

21

F7 charged

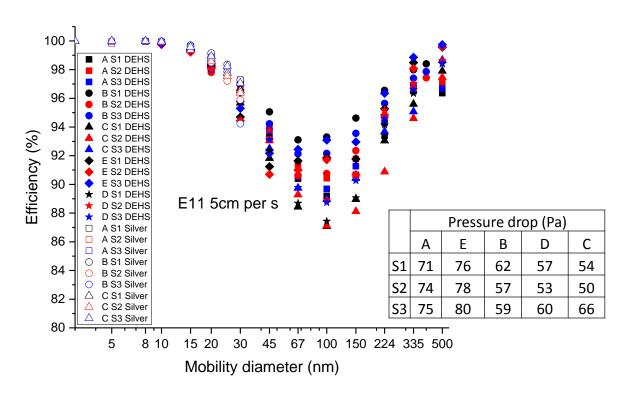


	Pressure drop (Pa)				
	Α	Е	В	D	С
S 1	34	20	22	27	25
S2	37	21	23	23	21
S 3	36	22	23	25	21

Green Color: stragglers Red Color: outliers

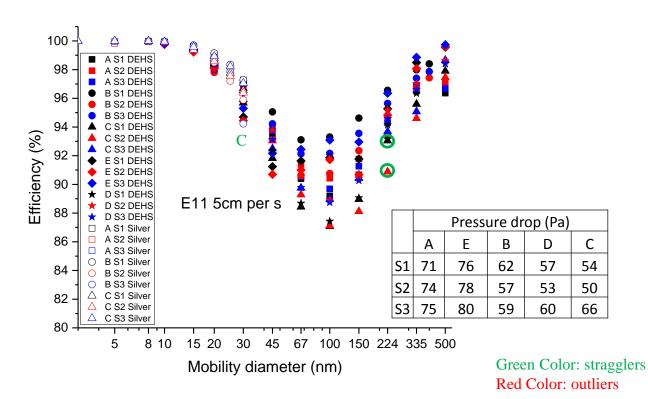
High variance for laboratory D; Statistical analysis reveals many stragglers and outliers for laboratory D.

F7 charged



	Pressure drop (Pa)				
	Α	Е	В	D	C
S1	34	20	22	27	25
S2	37	21	23	23	21
S 3	36	22	23	25	21

	m	S _r	Sı	S _R
20	96.8	0.7	1.1	1.3
30	92.22	0.85	2.53	2.67
45	88.80	0.61	0.48	0.77
67	84.189	0.836	2.066	2.228
100	83.760	0.859	1.592	1.809
150	85.26	0.60	1.24	1.38
224	85.99	0.97	1.33	1.65
335	88.02	1.01	1.14	1.52


Variances are about 1 − 2 %.

E11 (5cm/s)

- The deviation in filtration efficiency is low among the different laboratories.
- There is a deviation in pressure drop measured among the different laboratories.

E11 (5cm/s)

The deviation in filtration efficiency is low among the different laboratories. Thus, statistical analysis does not reveal outliers.

E11(5cm/s)

S,

0.3

0.48

0.74

0.877

0.849

0.90

0.85

0.47

m 98.4

96.22

92.98

90.759

90.196

91.27

94.61

97.00

S

0.2

0.83

1.02

1.056

1.962

1.56

1.05

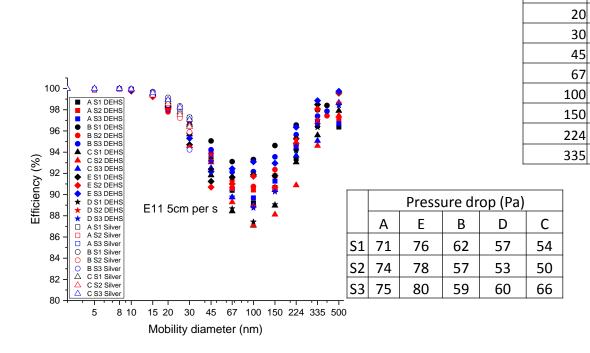
1.11

 S_R

0.4

0.96

1.26


1.373

2.138

1.80

1.35

1.21

The deviation in filtration efficiency is low among the different laboratories. Thus, statistical analysis does not reveal outliers and the variances are low for all the particle size range.

Standardization procedure

Vote on ISO/CD 21083-1 (draft method for 20 - 500 nm)

"Do you agree to the circulation of the draft as a DIS?"

Date of circulation: 2016-06-30

Vote due date: 2016-08-31

Vote results: 11x yes, 3x yes with comments, 1x no, 2x abstain

(Attachment 3)

A large amount of comments were received, discussed in TC 195 WG6 meeting in Atlanta, Sept 17 2016, and will be addressed in the next version of the draft.

Standardization procedure

Vote on ISO/CD 21083-2 (draft method for 3 - 20 nm)

"Do you agree to the circulation of the draft as a DIS?"

Date of circulation: 2016-07-01

Vote due date: 2016-08-31

Vote results: 11x yes, 3x yes with comments, 1x no, 2x abstain

(Attachment 4)

A large amount of comments were received, discussed in TC 195 WG6 meeting in Atlanta, Sept 17 2016, and will be addressed in the next version of the draft.

Summary

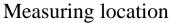
- \triangleright Standard development for airborne nanoparticle filtration in the range of 3 500 nm is underway.
- > Round-robin tests are close to the end.
- Statistical analysis of the test data is underway. The repeatability and reproducibility depend on the filter media properties.
- Future activities:

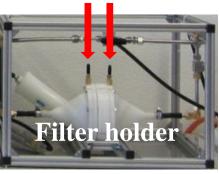
Further analysis of the test results;

Revision and improvement of the test methods;

Circulation of the test methods and development of consensus documents

Thank you


Test procedure (1/2)


1. Preparatory checks

- The accuracy of instruments should be with in the specification of the manufacturers.
 - Zero check, purity check for test air and leakage check should be performed.

2. Pressure drop measurement

- Initial air pressure drop of clean filters should be measured.

3. Correction factors

- The factors, considering particles loss caused by the filter holder and filter supporting screen, should be determined before the filtration tests.

4. Measurement of the efficiency of the filters

	Particle	Me	easuring points (Suggested points)	Concentrations
	Silver (3 - 20 nm)		6 point (3, 5, 8, 10, 15, 20 nm)	-
		8 points (3, 5, 8, 10, 12, 15, 18, 20 nm)		-
	DEHS	9 points (Tested)	20, 30, 45, 67, 100 and 150 nm	0.03%, diluted in IPA
			224, 335 and 500 nm	0.3%, diluted in IPA
	(20 - 500 nm)	12 points	20, 25, 30, 41, 56, 77, 105 and 143 nm	0.03%, diluted in IPA
			196, 268, 366 and 500 nm	0.3%, diluted in IPA

5. Minimal downstream counts

Particle size range (nm)	Minimal downstream counts
3 - 50	10
50 - 500	20

6. Test evaluation

Filter grade	Minimal number of testing samples
Low grade	5
High grade	3